FHE

From certFHE Community KB
Revision as of 08:50, 9 March 2020 by Gturcas (talk | contribs)
Jump to navigation Jump to search

Intuition

Let be a homomorphic encryption scheme. A desirable property of is the possibility of evaluation arbitrary functions on ciphertexts from in a meaningful way. Clearly the complexity of must depend on the complexity of the function . To measure the latter, we use , the size of a boolean circuit that computes . The algorithm is efficient if there exists a polynomial such that for any function that is represented by a circuit of size , the complexity of is at most .


Definitions

Let us fix a security parameter . Assume that the ciphertext and the plaintext have the algebraic structure of a ring and that is a ring homomorphism.

Definition. A homomorphic encryption scheme is called leveled if the decryption algorithm is correct for for a certain number of ring operations made on .

TODO: Write about the practical reasons for using a leveled scheme.

Definition. A homomorphic encryption scheme is called compact if there exists a polynomial function such that the output length of is at most bits long, regardless of the ring homomorphism or the number of ciphertext inputs , for any tuple of ciphertexts.

A homomorphic encryption scheme as above, but for which we do not require that is polynomial in is called bounded .

Examples

References