Difference between revisions of "GSW"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | Around 2013, Gentry, Sahai and Waters <ref> C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013 (Springer). https://eprint.iacr.org/2013/340</ref> proposed a new way of building FHE schemes whose homomorphic multiplication algorithms are more natural than those presented in [[BFV]] or [[BGV]]. | + | Around 2013, Gentry, Sahai and Waters <ref> C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013 (Springer). https://eprint.iacr.org/2013/340</ref> proposed a new way of building FHE schemes whose homomorphic multiplication algorithms are more natural than those presented in [[BFV]] or [[BGV]]. A distinguished feature of the scheme we are about to present is an asymmetric formula for the <b>growth of the noise</b> when multiplying two ciphertexts. Due to this feature, certain types of circuits have a very slow noise growth rate. Based on this asymmetry, Alperin-Sheriff and Peikert <ref> J. Alperin-Sheriff and C. Peikert. Faster Bootstrapping with Polynomial Error. In CRYPTO 2014 (Springer). https://eprint.iacr.org/2014/094</ref> found a very efficient bootstrapping technique for the [[GSW]] scheme. |
== References == | == References == |
Revision as of 08:59, 4 June 2020
Around 2013, Gentry, Sahai and Waters [1] proposed a new way of building FHE schemes whose homomorphic multiplication algorithms are more natural than those presented in BFV or BGV. A distinguished feature of the scheme we are about to present is an asymmetric formula for the growth of the noise when multiplying two ciphertexts. Due to this feature, certain types of circuits have a very slow noise growth rate. Based on this asymmetry, Alperin-Sheriff and Peikert [2] found a very efficient bootstrapping technique for the GSW scheme.
References
- ↑ C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013 (Springer). https://eprint.iacr.org/2013/340
- ↑ J. Alperin-Sheriff and C. Peikert. Faster Bootstrapping with Polynomial Error. In CRYPTO 2014 (Springer). https://eprint.iacr.org/2014/094